Our work at the Rosalind Franklin Institute is driven by a clear aim of making transformative leaps forward in life science.
Five complementary scientific themes are together developing beyond-state-of-the-art technologies that will allow us to see the biological world in new ways – from single molecules to entire systems.
This insight will speed up the discovery of new medicines, help find new diagnostics, push forward microbial and plant science and contribute to a deeper understanding of human health and disease.
Our advanced technologies are being applied across a breadth of biological areas, with a strong current focus on infection and the body’s response to it. Those technologies include cellular tomography, high-throughput drug discovery, in-cell chemistry and synthetic biologics, mass spectrometric imaging, and enabling biological tools such as nanobodies (already put to the test during the coronavirus pandemic).
- We are tackling the global problem of antimicrobial resistance by probing the mechanisms of resistance, by observing how drugs act in human cells, and by investigating how our small molecule and protein modification tools can be employed against microbial disease.
- We are driving forward our understanding of viruses and our ability to respond to emerging diseases by using electron tomography to visualise viral replication and infection, by using cellular tomography to understand the biological mechanisms of viral action, and by employing Franklin-produced nanobodies both to stabilise proteins for advanced imaging and to explore as potential therapeutic and diagnostic tools.
- We are addressing the huge burden created around the world by intracellular pathogens as diverse as malaria and chlamydia. We are doing this by exploring the concept of imaging across multiple dimensions – in chemistry, space and time – to enable the investigation of novel compounds and reveal fundamental biological mechanisms in these complex pathogens. Through this, we will generate the ability to track an antimicrobial drug from the human cell to the pathogen.
We work as an integrated team but we can describe ourselves as five overlapping themes.
Scientific themes
Artificial Intelligence and Informatics
Data is critical to the research carried out at the Franklin, where the latest tools and technologies are capable of producing enormous quantities of complex information even in single experiments. Artificial Intelligence and Informatics plays a key role in augmenting the Franklin’s other scientific themes by applying the latest methods in AI and machine learning to enhance performance in areas such as data processing and analysis – ‘automating the mundane to highlight the extraordinary’.
Find out more
Biological Mass Spectrometry
The Biological Mass Spectrometry theme aims to seed a functional proteomics revolution by bringing together the UK’s world-leading technology companies and academic expertise. A key objective is to construct a unique multimodal-imaging mass spectrometer instrument, which will allow the molecular mapping of biological tissues at unprecedented sensitivity, chemical depth and spatial resolution. The instrument is envisioned not only to detect the building blocks of tissues, but also to provide proper structural characterisation of all detected molecular species and supramolecular complexes.
Find out more
Correlated Imaging
Correlated Imaging addresses the primary challenges in amalgamating data from a multiple established and newly developed imaging techniques to enable researchers to build a clearer picture of their target – from centimetre-scale tumours to picometre-scale atoms. Central to this vision will be the development of new imaging modes not available in conventional cryo-EM instruments, which will significantly boost available resolution and allow the recording of images at a million frames per second at close to atomic resolution – a step-change in performance. This capability will reveal previously hidden rapid dynamic events in structural biology, including how proteins change under the influence of different drug actions, or how membranes fold and unfold in different biological systems.
Find out more
Next Generation Chemistry
By applying the techniques of organic chemistry to the exploration of living systems, scientists can generate fresh insights into complex biology. The aim, ultimately, is to develop methods of reprogramming the functional information found inside biological molecules like proteins. Drug and vaccine development is a natural direction for much of this work, alongside the therapeutic use of protein editing itself through the enhancement of ‘deficient’ proteins or the introduction of synthetic biologics into the body.
Find out more
Structural Biology
Structural biology, through its ability to bring molecules to life in 3D, has led to breakthroughs including new treatments for influenza and HIV. An important bottleneck remains, in the production and delivery of biological samples. An aim of this theme is to increase, by an order of magnitude, the number of specimens that can be prepared for analysis by revolutionising the process in partnership with medicine, academia and industry. At the same time, we want to image molecules in the cell, electron tomography. We are leading a national effort to make electron tomography of cells routine. The deeper knowledge and new technology developed at the Franklin will bring will transform the search for new medicines.
Find out more
Collaborate with us

We want to partner with many different types of organisation and use our technologies to help answer research problems across life science, to enable this we have various routes by which you can collaborate with us.